497 research outputs found

    unexpected results in the constitution of small supernumerary marker chromosomes

    Get PDF
    Abstract Traditional approaches for the classification of Small Supernumerary Marker Chromosomes (sSMC), mostly based on FISH techniques, are time-consuming and not always sufficient to fully understand the true complexity of this class of rearrangements. We describe four supernumerary marker chromosomes that, after array-CGH, were interpreted rather differently in respect to the early classification made by conventional cytogenetics and FISH investigations, reporting two types of complex markers which DNA content was overlooked by conventional approaches: 1. the sSMC contains non-contiguous regions of the same chromosome and, 2. the sSMC, initially interpreted as a supernumerary del(15), turns out to be a derivative 15 to which the portion of another chromosome was attached. All are likely derived from partial trisomy rescue events, bringing further demonstration that germline chromosomal imbalances are submitted to intense reshuffling during the embryogenesis, leading to unexpected complexity and changing the present ideas on the composition of supernumerary marker chromosomes

    Non-invasive Prenatal Testing, What Patients Do Not Learn, May Be Due to Lack of Specialist Genetic Training by Gynecologists and Obstetricians?

    Get PDF
    Platforms for “non-invasive prenatal testing” (NIPT), or also referred to as “non-invasive prenatal screening” (NIPS) have been available for over 10 years, and are the most recent tools available to obtain information about genetic condition(s) of an unborn child. The highly praised advantage of NIPT-screening is that results can provide early hints on the detection of fetal trisomies and gonosomal numerical aberrations as early as the 10th week of gestation onward, without any need for invasive procedures, such as amniocenteses or alternatives. Understandably, the public along with gynecologists and obstetricians eagerly await these early test results. Their general hope for normal (=negative) test results is also justified, as in >95% of the tested cases such an outcome is to be expected. However, pregnant women can be disappointed and confused, particularly regarding the genetic information and proposed care when the results are positive, and these emotions are also common with false-positive and false-negative NIPT results. Finally, such concerns in understanding the advantages and limitations of this routinely ordered screening tool end up at Clinical Geneticists and Genetic counselors. In this review, general background on NIPT, differences of NIPT platforms, advantages and limitations of NIPT, as well as consequences of insufficient counseling before and after NIPT are summarized. To provide comprehensive care in all pregnancies situations, professionals need a careful attitude toward offering NIPT along with specially training and qualifications in counseling for these procedures. Often it is gynecologists and obstetricians who discuss the use of NIPT with patients; however, although these physicians have a highly qualified background and knowledge in their respective specialty area(s), they may lack specific training on the interpretation of NIPT-screening results. These potential knowledge gaps must be closed quickly and comprehensively by the corresponding scientific societies to ensure optimal patient care

    Cytogenetic contribution to uniparental disomy (UPD)

    Get PDF
    Uniparental disomy (UPD) is often considered as an event to be characterized exclusively by molecular genetic or epigenetic approaches. This review shows that at least one third of UPD cases emerge in connection with or due to a chromosomal rearrangement. Thus, additional (molecular) cytogenetic characterization of UPD cases is essential. Up to now > 1,100 UPD cases detected in clinical, non-tumor cases are reported in the literature. Recently, these cases were summarized in a regularly updated, freely available online database http://www.med.uni-jena.de/fish/sSMC/00START-UPD.htm. Based of this, here the presently known imprinting syndromes, the chromosomal contribution to UPD phenomenon, and the cytogenetic subgroups of UPD, including cases with normal, abnormal balanced or unbalanced karyotype (like e.g. small supernumerary marker chromosomes and Robertsonian translocations) and segmental UPD are reviewed. Furthermore, chromosome fragmentation as a possible mechanism of trisomic rescue is discussed, which might help to explain the observed 1:9 rate of maternal versus paternal UPD present in cases with original trisomic karyotypes. Overall, as UPD is more but an interesting rarity, the genetic background of each "UPD-patient" needs to be characterized besides by molecular methods, also by molecular cytogenetics in detail

    Chromosomal Heteromorphisms and Cancer Susceptibility Revisited

    Get PDF
    Chromosomal heteromorphisms (CHs) are a part of genetic variation in man. The past literature largely posited whether CHs could be correlated with the development of malignancies. While this possibility seemed closed by end of the 1990s, recent data have raised the question again on the potential influences of repetitive DNA elements, the main components of CHs, in cancer susceptibility. Such new evidence for a potential role of CHs in cancer can be found in the following observations: (i) amplification and/or epigenetic alterations of CHs are routinely reported in tumors; (ii) the expression of CH-derived RNA in embryonal and other cells under stress, including cancer cells; (iii) the expression of parts of CH-DNA as long noncoding RNAs; plus (iv) theories that suggest a possible application of the “two-hit model” for euchromatic copy number variants (CNVs). Herein, these points are discussed in detail, which leads to the conclusion that CHs are by far not given sufficient consideration in routine cytogenetic analysis, e.g., leukemias and lymphomas, and need more attention in future research settings including solid tumors. This heightened focus may only be achieved by approaches other than standard sequencing or chromosomal microarrays, as these techniques are at a minimum impaired in their ability to detect, if not blind to, (highly) repetitive DNA sequences

    DNA Copy Number Variations as Markers of Mutagenic Impact

    Get PDF
    DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed

    Partial trisomy 9p22 to 9p24.2 in combination with partial monosomy 9pter in a Syrian girl

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Partial trisomy of the short arm of chromosome 9 is among the most common autosomal structural chromosomal anomalies leading to chromosomal imbalance in human. Clinical characteristics are craniofacial dysmorphism including hypertelorism, prominent nose, deep-set eyes, and down-slanting palpebral fissures. The degree of clinical severity in partial trisomy 9p roughly correlates with the size of the chromosomal imbalance. Therefore, breakpoints as well as clinical findings need to be precisely defined for differential diagnosis.</p> <p>Results</p> <p>Chromosomes of a young female were analyzed due to primary amenorrhea, short stature, developmental delay and a characteristic facial appearance. Cytogenetic analysis using GTG banding identified a karyotype 46, XX, add(9pter). Surprisingly the application of high resolution molecular cytogenetic techniques characterized a partial trisomy 9p24.2-p22 and partial monosomy 9pter-p24.2. To the best of our knowledge only four similar case were reported by now.</p> <p>Conclusion</p> <p>Attempts for genotype-phenotype correlations for partial trisomy 9p might have been hampered by the fact that more complex, cryptic aberrations were neither considered nor detected in comparable clinical cases.</p

    Four small supernumerary marker chromosomes derived from chromosomes 6, 8, 11 and 12 in a patient with minimal clinical abnormalities: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Small supernumerary marker chromosomes are still a problem in cytogenetic diagnostic and genetic counseling. This holds especially true for the rare cases with multiple small supernumerary marker chromosomes. Most such cases are reported to be clinically severely affected due to the chromosomal imbalances induced by the presence of small supernumerary marker chromosomes. Here we report the first case of a patient having four different small supernumerary marker chromosomes which, apart from slight developmental retardation in youth and non-malignant hyperpigmentation, presented no other clinical signs.</p> <p>Case presentation</p> <p>Our patient was a 30-year-old Caucasian man, delivered by caesarean section because of macrosomy. At birth he presented with bilateral cryptorchidism but no other birth defects. At age of around two years he showed psychomotor delay and a bilateral convergent strabismus. Later he had slight learning difficulties, with normal social behavior and now lives an independent life as an adult. Apart from hypogenitalism, he has multiple hyperpigmented nevi all over his body, short feet with pes cavus and claw toes. At age of 30 years, cytogenetic and molecular cytogenetic analysis revealed a karyotype of 50,XY,+min(6)(:p11.1-> q11.1:),+min(8)(:p11.1->q11.1:),+min(11)(:p11.11->q11:),+min(12)(:p11.2~12->q10:), leading overall to a small partial trisomy in 12p11.1~12.1.</p> <p>Conclusions</p> <p>Including this case, four single case reports are available in the literature with a karyotype 50,XN,+4mar. For prenatally detected multiple small supernumerary marker chromosomes in particular we learn from this case that such a cytogenetic condition may be correlated with a positive clinical outcome.</p
    corecore